Catboost - Training a Regression Model on GPU
Python
Training a regression model using catboost on GPU.
1| # Initalise regressor model with RMSE loss function 2| # Train using GPU 3| model = cb.CatBoostRegressor(iterations=10000, 4| learning_rate = 0.05, 5| depth = 10, 6| min_data_in_leaf = 5, 7| border_count = 64, 8| l2_leaf_reg = 6, 9| loss_function='RMSE', 10| eval_metric='RMSE', 11| task_type='GPU') 12| 13| #Create catboost pool for evaluation set 14| #cat_indicies is a list of indicies where categorical exist in the X dataframes 15| eval_dataset = cb.Pool(X_val, y_val, cat_features=cat_indicies) 16| 17| #Fits the model with early stopping rounds set to 50 18| model.fit(X_train, 19| y_train, 20| cat_features=cat_indicies, 21| eval_set=eval_dataset, 22| early_stopping_rounds=50, 23| silent=False)
142
127
122
115