Sklearn RandomizedSearchCV - Tuning Hyperparameters Using Randomized Search Cross Validation

Python

 1|  from sklearn.ensemble import RandomForestClassifier
 2|  from sklearn.model_selection import RandomizedSearchCV
 3|  
 4|  # Step 1: Initialise Random Forest Classifier
 5|  rf = RandomForestClassifier(class_weight='balanced',
 6|                              n_jobs=-1,
 7|                              random_state=101)
 8|  
 9|  # Step 2: Create a dictionary containing the parameters we want
10|  # to tune and the values we want to sample from
11|  params = {'n_estimators':list(range(1,100,10)),
12|           'max_depth':[None,5,10]}
13|  
14|  # Step 3: Initialise RandomizedSearchCV with n_iter(the number of parameter settings to sample)
15|  # set to 10 and then fit model before printing out the best parameters
16|  model = RandomizedSearchCV(estimator=rf, 
17|                             param_distributions=params, 
18|                             n_iter=10,
19|                             random_state=101)
20|  model.fit(X_train, y_train)
21|  print(model.best_params_)
Did you find this snippet useful?

Sign up for free to to add this to your code library