Sklearn Principle Component Analysis - PCA Example
Python
How to perform principle component analysis on training data, transform both the training and test data before outputting the explained variance ratio.
1| from sklearn.decomposition import PCA 2| 3| # Step 1: Initalise and fit PCA for 4 dimensions 4| pca = PCA(n_components=4) 5| pca.fit(X_train) 6| 7| # Step 2: Transform data 8| X_train = pd.DataFrame(pca.transform(X_train)) 9| X_test = pd.DataFrame(pca.transform(X_test)) 10| 11| # Step 3: Print out explained variance ratio 12| print(pca.explained_variance_ratio_)
153
135
130
122