Classification with HistGradientBoostingClassifier in Scikit-Learn: An Implementation Guide
Python
This code snippet trains a classification model using Sklearns HistGradientBoostingClassifier algorithm.
This histogram gradient boosting classification algorithm trains faster than a standard gradient boosting algorithm and also allows categorical features to be included in the training data.
1| from sklearn.ensemble import HistGradientBoostingClassifier 2| from sklearn.metrics import classification_report, log_loss, roc_auc_score 3| 4| # Step 1: Create list containing the indices of categorical features 5| categorical_features = [1] 6| 7| # Step 2: Initialise histogram gradient boosting classification 8| # model and fit 9| model = HistGradientBoostingClassifier(learning_rate=0.1, 10| max_depth=None, 11| max_bins=255, 12| categorical_features=categorical_features, 13| random_state=101) 14| model.fit(X_train, y_train) 15| 16| # Step 3: Make predictions for test data & evaluate performance 17| y_pred = model.predict(X_test) 18| print('Classification Report:',classification_report(y_test, y_pred)) 19| print('Log Loss:',log_loss(y_test, y_pred)) 20| print('ROC AUC:',roc_auc_score(y_test, y_pred))
149
132
127
119