Sklearn AdaBoost Classifier - Training a Classification Model Using AdaBoost
Python
Here we see how to train an AdaBoost classification model with a decision tree as the base estimator.
1| from sklearn.ensemble import AdaBoostClassifier 2| from sklearn.tree import DecisionTreeClassifier 3| from sklearn.metrics import classification_report, log_loss, roc_auc_score 4| 5| # Step 1: Initialise base estimator and AdaBoost classifier 6| decision_tree = DecisionTreeClassifier(max_depth=1, 7| class_weight='balanced') 8| model = AdaBoostClassifier(estimator=decision_tree, 9| n_estimators=10, 10| learning_rate=0.1) 11| model.fit(X_train, y_train) 12| 13| # Step 2: Create dictionary that contains feature importance 14| feature_importance = dict(zip(X_train.columns, model.feature_importances_)) 15| print('Feature Importance:',feature_importance) 16| 17| # Step 3: Make predictions for test data & evaluate performance 18| y_pred = model.predict(X_test) 19| print('Classification Report:',classification_report(y_test, y_pred)) 20| print('Log Loss:',log_loss(y_test, y_pred)) 21| print('ROC AUC:',roc_auc_score(y_test, y_pred))
149
132
127
119