Sklearn Random Forest Feature Importance - Plot Using Matplotlib
Python
A code snippet showing how to plot a horizontal bar chart showing the features importances for an Sklearn Random Forest model.
1| import matplotlib.pyplot as plt 2| from sklearn.ensemble import RandomForestRegressor 3| 4| # Step 1: Train Random Forest model 5| model = RandomForestRegressor() 6| model.fit(X_train, y_train) 7| 8| # Step 2: Plot feature importances 9| features = X_train.columns 10| importance_values = model.feature_importances_ 11| 12| plt.barh(y=range(len(features)), 13| width=importance_values, 14| tick_label=features) 15| plt.show()
149
132
127
119