Sklearn DecisionTreeClassifier - Training a Decision Tree Classification Model
Python
In this code snippet a Decision Tree classification model is trained using Sklearn. The model is then evaluated by exploring the feature importance of each feature in the training data and then testing against new data using a range of evaluation metrics.
1| from sklearn.tree import DecisionTreeClassifier 2| from sklearn.metrics import classification_report, log_loss, roc_auc_score 3| 4| # initialise & fit Decision Tree classifier 5| model = DecisionTreeClassifier(criterion='gini', 6| max_depth=None, 7| min_samples_split=5, 8| min_samples_leaf=5, 9| random_state=101) 10| model.fit(X_train, y_train) 11| 12| # create dictionary that contains feature importance 13| feature_importance= dict(zip(X_train.columns, model.feature_importances_)) 14| print('Feature Importance:',feature_importance) 15| 16| # make predictions for test data & evaluate performance 17| y_pred = model.predict(X_test) 18| print('Classification Report:',classification_report(y_test, y_pred)) 19| print('Log Loss:',log_loss(y_test, y_pred)) 20| print('ROC AUC:',roc_auc_score(y_test, y_pred))
149
132
127
119