
Data Preprocessing with Pandas
IMPORT DATA
CSV
EXCEL
SCRAPE DATA
PREPARE DATA
CONVERTING
CLEANING NANS
CLEANING STRINGS
SELECTING & RENAMING
SAMPLING
FILTERING
TRANSFORM
SUMMARISE
JOIN
MERGE
UNION
FEATURE ENGINEERING
WINDOW & LAG FEATURES
STRINGS
DATES
STATISTICS & FORMULAS
Creating Grouped Rolling Features in Pandas
Python
Time Series
In this code snippet we create features that give the rolling average, minimum and maximum stock prices over the previous 20 rows, grouped by stock.
1| df['avg_price_20'] = df.groupby(['stock'])['price'].transform(lambda x: x.rolling(20).mean()) 2| 3| df['min_price_20'] = df.groupby(['stock'])['price'].transform(lambda x: x.rolling(20).min()) 4| 5| df['max_price_20'] = df.groupby(['stock'])['price'].transform(lambda x: x.rolling(20).max())
1